Video-MME
V
Video MME
简介 :
Video-MME是一个专注于多模态大型语言模型(MLLMs)在视频分析领域性能评估的基准测试。它填补了现有评估方法中对MLLMs处理连续视觉数据能力的空白,为研究者提供了一个高质量和全面的评估平台。该基准测试覆盖了不同长度的视频,并针对MLLMs的核心能力进行了评估。
需求人群 :
Video-MME的目标受众是人工智能领域的研究者和开发者,特别是那些专注于视频理解和多模态交互的专业人士。它为这些用户提供了一个标准化的测试平台,帮助他们评估和改进自己的MLLMs模型。
总访问量: 3.6K
占比最多地区: US(86.53%)
本站浏览量 : 75.9K
使用场景
Gemini 1.5 Pro在不同视频长度和子类别中的准确度评分
GPT-4o和GPT-4V在视频分析任务中的表现对比
LLaVA-NeXT-Video模型在不同视频任务中的评分结果
产品特色
提供短、中、长视频的准确度评分
包含6个主要领域和30个子类别的视频类型
全面覆盖视频长度和任务类型
新收集并由人工标注的数据,非现有视频数据集
提供视频类别层级和视频时长及任务类型分布的统计信息
与其他基准测试进行比较,突出Video-MME的独特优势
使用教程
访问Video-MME的官方网站
了解不同视频长度和任务类型的评估标准
选择感兴趣的MLLMs模型进行性能测试
提交模型并获取在不同视频子类别中的表现结果
分析结果,与其他模型或基准进行比较
利用评估结果优化和改进MLLMs模型
AIbase
智启未来,您的人工智能解决方案智库
© 2025AIbase