
使用场景
在搜索引擎中对搜索结果进行排序,提高检索相关性
在推荐系统中对推荐列表进行优化,提升用户体验
在问答系统中对候选答案进行排序,提供更准确的回答
产品特色
支持多种排序模型,如Cross Encoder Reranker和LLM Reranker
对长文档友好,支持最大长度截断和切分取最大分值的处理逻辑
易于扩展,新排序模型的集成只需继承basereranker并实现特定函数
提供了统一的接口,简化了不同模型的推理过程
支持微调任意开源的RAG检索模型
提供了详细的使用教程和测试案例,方便用户学习和对齐原有推理框架
使用教程
步骤1:访问RAG-Retrieval的GitHub页面并下载代码
步骤2:根据系统环境手动安装与本地CUDA版本兼容的torch
步骤3:通过pip安装rag-retrieval库
步骤4:根据需要选择并配置支持的Reranker模型
步骤5:使用rag-retrieval库进行模型的推理或微调
步骤6:根据提供的测试案例验证模型性能
步骤7:集成到具体应用中,进行实际的检索和排序任务
精选AI产品推荐

Deepmind Gemini
Gemini是谷歌DeepMind推出的新一代人工智能系统。它能够进行多模态推理,支持文本、图像、视频、音频和代码之间的无缝交互。Gemini在语言理解、推理、数学、编程等多个领域都超越了之前的状态,成为迄今为止最强大的AI系统之一。它有三个不同规模的版本,可满足从边缘计算到云计算的各种需求。Gemini可以广泛应用于创意设计、写作辅助、问题解答、代码生成等领域。
AI模型
11.4M
中文精选

Liblibai
LiblibAI是一个中国领先的AI创作平台,提供强大的AI创作能力,帮助创作者实现创意。平台提供海量免费AI创作模型,用户可以搜索使用模型进行图像、文字、音频等创作。平台还支持用户训练自己的AI模型。平台定位于广大创作者用户,致力于创造条件普惠,服务创意产业,让每个人都享有创作的乐趣。
AI模型
8.0M