

Torchao
简介 :
torchao是PyTorch的一个库,专注于自定义数据类型和优化,支持量化和稀疏化权重、梯度、优化器和激活函数,用于推理和训练。它与torch.compile()和FSDP2兼容,能够为大多数PyTorch模型提供加速。torchao旨在通过量化感知训练(QAT)和后训练量化(PTQ)等技术,提高模型的推理速度和内存效率,同时尽量减小精度损失。
需求人群 :
目标受众为机器学习工程师、数据科学家和研究人员,他们需要在保持模型精度的同时,提高模型的推理速度和减少内存占用。torchao通过提供多种量化和稀疏化技术,帮助用户优化他们的PyTorch模型,以适应资源受限的环境或提高大规模部署的效率。
使用场景
使用torchao对图像分割模型进行量化,提高了推理速度9.5倍。
使用torchao的量化感知训练技术,显著提高了语言模型的精度和推理速度。
在进行扩散模型推理时,通过使用torchao的稀疏性技术,减少了模型的内存占用。
产品特色
支持后训练量化(Post Training Quantization)和量化感知训练(Quantization Aware Training)。
提供量化和稀疏化选项,包括仅量化权重、权重和激活一起量化,以及权重激活量化并稀疏化权重。
支持自定义量化算法的开发者API。
提供KV缓存量化功能,以支持长上下文长度的推理。
支持Float8训练,使用scaled float8数据类型。
支持稀疏训练,提供2:4稀疏性支持。
提供内存高效的优化器,如8位和4位量化的AdamW优化器。
支持单GPU CPU卸载,有效减少VRAM需求。
使用教程
安装torchao库。
选择需要量化的模型。
根据模型的特点,选择合适的量化策略。
使用torchao的API对模型进行量化。
如果需要,进行量化感知训练。
在训练完成后,使用torchao的API将模型转换为量化模型。
部署量化后的模型进行推理。
监控和评估量化模型的性能。
精选AI产品推荐

Deepmind Gemini
Gemini是谷歌DeepMind推出的新一代人工智能系统。它能够进行多模态推理,支持文本、图像、视频、音频和代码之间的无缝交互。Gemini在语言理解、推理、数学、编程等多个领域都超越了之前的状态,成为迄今为止最强大的AI系统之一。它有三个不同规模的版本,可满足从边缘计算到云计算的各种需求。Gemini可以广泛应用于创意设计、写作辅助、问题解答、代码生成等领域。
AI模型
11.4M
中文精选

Liblibai
LiblibAI是一个中国领先的AI创作平台,提供强大的AI创作能力,帮助创作者实现创意。平台提供海量免费AI创作模型,用户可以搜索使用模型进行图像、文字、音频等创作。平台还支持用户训练自己的AI模型。平台定位于广大创作者用户,致力于创造条件普惠,服务创意产业,让每个人都享有创作的乐趣。
AI模型
8.0M