OneGen
O
Onegen
简介 :
OneGen是一个为大型语言模型(LLMs)设计的高效单遍生成和检索框架,用于微调生成、检索或混合任务。它的核心思想是将生成和检索任务整合到同一上下文中,通过将检索任务分配给以自回归方式生成的检索令牌,使得LLM能够在单次前向传递中执行两种任务。这种方法不仅降低了部署成本,还显著减少了推理成本,因为它避免了对查询进行两次前向传递计算的需求。
需求人群 :
OneGen适合自然语言处理领域的研究人员和开发者,特别是那些对大型语言模型的生成和检索任务感兴趣的用户。它可以帮助他们更高效地进行模型训练和推理,同时减少资源消耗。
总访问量: 474.6M
占比最多地区: US(19.34%)
本站浏览量 : 53.3K
使用场景
用于实体链接任务,通过预训练模型快速识别文本中的实体。
在单跳问答任务中,通过模型生成准确的答案。
应用于多跳问答任务,通过模型的推理过程找到问题的答案。
产品特色
支持生成和检索任务的统一处理,降低部署成本。
在生成过程中实现检索,避免了对查询进行两次前向传递计算。
支持实体链接、单跳问答和多跳问答等多种任务。
提供预训练模型下载,方便用户快速开始。
支持从零开始训练模型,提供灵活的配置选项。
提供详细的评估脚本,方便用户评估模型性能。
使用教程
1. 克隆OneGen仓库到本地环境。
2. 创建并激活Python虚拟环境。
3. 安装所需的依赖包。
4. 下载并解压数据集,准备训练或推理。
5. 根据需要下载预训练模型(可选)。
6. 配置模型参数和路径。
7. 运行推理脚本,进行模型预测。
8. 使用评估脚本,评估模型性能。
AIbase
智启未来,您的人工智能解决方案智库
© 2025AIbase