

Unianimate
简介 :
UniAnimate是一个用于人物图像动画的统一视频扩散模型框架。它通过将参考图像、姿势指导和噪声视频映射到一个共同的特征空间,以减少优化难度并确保时间上的连贯性。UniAnimate能够处理长序列,支持随机噪声输入和首帧条件输入,显著提高了生成长期视频的能力。此外,它还探索了基于状态空间模型的替代时间建模架构,以替代原始的计算密集型时间Transformer。UniAnimate在定量和定性评估中都取得了优于现有最先进技术的合成结果,并且能够通过迭代使用首帧条件策略生成高度一致的一分钟视频。
需求人群 :
UniAnimate的目标受众主要是计算机视觉和图形学领域的研究人员和开发者,特别是那些专注于人物动画和视频生成的专业人士。它适合需要生成高质量、长时序人物视频动画的应用场景,如电影制作、游戏开发、虚拟现实体验等。
使用场景
使用UniAnimate为电影制作生成高质量的人物动画。
在游戏开发中,利用UniAnimate生成连贯的人物动作序列。
虚拟现实体验中,通过UniAnimate创建逼真的人物动态效果。
产品特色
使用CLIP编码器和VAE编码器提取给定参考图像的潜在特征。
将参考姿势的表示纳入最终参考指导,以便于学习参考图像中的人体结构。
使用姿势编码器对目标驱动的姿势序列进行编码,并与噪声输入沿通道维度进行连接。
将连接的噪声输入与参考指导沿时间维度堆叠,并输入到统一视频扩散模型中以去除噪声。
在统一视频扩散模型中,时间模块可以是时间Transformer或时间Mamba。
采用VAE解码器将生成的潜在视频映射到像素空间。
使用教程
首先,准备一张参考图像和一系列目标姿势序列。
使用CLIP编码器和VAE编码器提取参考图像的潜在特征。
将参考姿势的表示与潜在特征结合,形成参考指导。
通过姿势编码器对目标姿势序列进行编码,并与噪声视频结合。
将结合后的输入数据输入到统一视频扩散模型中进行噪声去除。
根据需要选择时间模块,可以是时间Transformer或时间Mamba。
最后,使用VAE解码器将处理后的潜在视频转换为像素级的视频输出。
精选AI产品推荐

Sora
Sora是一个基于大规模训练的文本控制视频生成扩散模型。它能够生成长达1分钟的高清视频,涵盖广泛的视觉数据类型和分辨率。Sora通过在视频和图像的压缩潜在空间中训练,将其分解为时空位置补丁,实现了可扩展的视频生成。Sora还展现出一些模拟物理世界和数字世界的能力,如三维一致性和交互,揭示了继续扩大视频生成模型规模来发展高能力模拟器的前景。
AI视频生成
17.2M

Animate Anyone
Animate Anyone旨在通过驱动信号从静态图像生成角色视频。我们利用扩散模型的力量,提出了一个专为角色动画量身定制的新框架。为了保持参考图像中复杂外观特征的一致性,我们设计了ReferenceNet来通过空间注意力合并详细特征。为了确保可控性和连续性,我们引入了一个高效的姿势指导器来指导角色的动作,并采用了一种有效的时间建模方法,以确保视频帧之间的平滑跨帧过渡。通过扩展训练数据,我们的方法可以为任意角色制作动画,与其他图像到视频方法相比,在角色动画方面取得了出色的结果。此外,我们在时尚视频和人类舞蹈合成的基准上评估了我们的方法,取得了最先进的结果。
AI视频生成
11.8M