

Reft
Overview :
ReFT is a simple yet effective method for enhancing the reasoning capabilities of large language models (LLMs). It first preheats the model through supervised fine-tuning (SFT), and then further fine-tunes the model using online reinforcement learning, specifically the PPO algorithm presented in this paper. ReFT significantly outperforms SFT by automatically sampling a large number of reasoning paths for a given problem and naturally deriving rewards from the true answers. ReFT's performance can be further improved by combining reasoning strategies (such as majority voting and re-ranking). It's noteworthy that ReFT achieves improvements by learning from the same training questions as SFT, without relying on additional or enhanced training questions. This demonstrates ReFT's stronger generalization ability.
Target Users :
Used to enhance the reasoning capabilities of large language models, especially in areas like solving mathematical problems.
Features
Supervised Fine-tuning (SFT)
Online Reinforcement Learning
PPO Algorithm
Reasoning Path Sampling
Performance Optimization Strategies
Featured AI Tools
Fresh Picks

Gemini 1.5 Flash
Gemini 1.5 Flash is the latest AI model released by the Google DeepMind team. It distills core knowledge and skills from the larger 1.5 Pro model through a distillation process, providing a smaller and more efficient model. This model excels in multi-modal reasoning, long text processing, chat applications, image and video captioning, long document and table data extraction. Its significance lies in providing solutions for applications requiring low latency and low-cost services while maintaining high-quality output.
AI model
70.4K

Siglip2
SigLIP2 is a multilingual vision-language encoder developed by Google, featuring improved semantic understanding, localization, and dense features. It supports zero-shot image classification, enabling direct image classification via text descriptions without requiring additional training. The model excels in multilingual scenarios and is suitable for various vision-language tasks. Key advantages include efficient image-text alignment, support for multiple resolutions and dynamic resolution adjustment, and robust cross-lingual generalization capabilities. SigLIP2 offers a novel solution for multilingual visual tasks, particularly beneficial for scenarios requiring rapid deployment and multilingual support.
AI model
61.0K