# Retrieval-Augmented Generation

Vidorag
ViDoRAG is a novel multimodal retrieval-augmented generation framework developed by Alibaba's Natural Language Processing team, designed for complex reasoning tasks involving visually rich documents. This framework significantly improves the robustness and accuracy of generative models through dynamic iterative reasoning agents and a Gaussian Mixture Model (GMM)-driven multimodal retrieval strategy. Key advantages of ViDoRAG include efficient handling of visual and textual information, support for multi-hop reasoning, and high scalability. The framework is suitable for scenarios requiring information retrieval and generation from large-scale documents, such as intelligent question answering, document analysis, and content creation. Its open-source nature and flexible, modular design make it a valuable tool for researchers and developers in the multimodal generation field.
AI Model
53.8K

M2RAG
M2RAG is a benchmark codebase for retrieval-augmented generation in multimodal contexts. It answers questions by retrieving multimodal documents, evaluating the ability of multimodal large language models (MLLMs) to leverage knowledge from multimodal contexts. The model is evaluated on tasks such as image captioning, multimodal question answering, fact verification, and image re-ranking, aiming to improve the effectiveness of models in multimodal contextual learning. M2RAG provides researchers with a standardized testing platform to help advance the development of multimodal language models.
AI Model
57.4K

Brag Langchain
bRAG-langchain is an open-source project focused on the research and application of Retrieval-Augmented Generation (RAG) technology. RAG is an AI technology that combines retrieval and generation. By retrieving relevant documents and generating answers, it provides users with more accurate and comprehensive information. This project provides a guide to RAG implementation, from basic to advanced, helping developers quickly get started and build their own RAG applications. Its key advantages are its open-source nature, flexibility, and ease of extension, making it suitable for various applications requiring natural language processing and information retrieval.
Development and Tools
60.7K

KET RAG
KET-RAG (Knowledge-Enhanced Text Retrieval Augmented Generation) is a powerful retrieval-augmented generation framework enhanced with knowledge graph technology. It achieves efficient knowledge retrieval and generation through a multi-granularity indexing framework, such as a knowledge graph skeleton and a text-keyword bipartite graph. This framework significantly improves retrieval and generation quality while reducing indexing costs, making it well-suited for large-scale RAG applications. Developed in Python, KET-RAG supports flexible configuration and extension, catering to the needs of developers and researchers seeking efficient knowledge retrieval and generation.
Model Training and Deployment
72.9K

Minirag
MiniRAG is a retrieval-augmented generation system designed for small language models, aimed at simplifying RAG processes and enhancing efficiency. It addresses the performance limitations of small models within traditional RAG frameworks through a semantically aware heterogeneous graph indexing mechanism and lightweight topological enhanced retrieval methods. This model shows significant advantages in resource-constrained scenarios, such as on mobile devices or edge computing environments. Its open-source nature allows for easy adoption and improvement within the developer community.
Model Training and Deployment
60.2K

C4ai Command R7b 12 2024
CohereForAI/c4ai-command-r7b-12-2024 is a multilingual model with 7 billion parameters, focusing on advanced tasks such as reasoning, summarization, question answering, and code generation. The model supports retrieval-augmented generation (RAG) and can utilize and combine multiple tools to accomplish more complex tasks. It excels in enterprise-related code use cases and supports 23 languages.
Coding Assistant
55.2K

Chonkie
Chonkie is a text chunking library designed for Retrieval-Augmented Generation (RAG) applications. It is lightweight, fast, and user-friendly. The library provides various text chunking methods, supports multiple tokenizers, and boasts high performance. Key advantages of Chonkie include rich functionality, ease of use, rapid processing speeds, extensive support, and a lightweight design. It is suitable for developers and researchers who require efficient text data processing, especially in natural language processing and machine learning. Chonkie is open-source and complies with the MIT license, making it freely available.
Development & Tools
67.6K

Visrag
VisRAG is an innovative retrieval-augmented generation (RAG) process based on visual language models (VLMs). Unlike traditional text-based RAG, VisRAG embeds documents directly as images through a VLM, which enhances the generative capabilities of the VLM. This method maximizes the retention of data information from the original documents, eliminating the information loss introduced during parsing. The application of the VisRAG model on multimodal documents demonstrates its strong potential in information retrieval and enhanced text generation.
Research Equipment
56.3K

Lightrag
LightRAG is a retrieval-augmented generation model designed to enhance performance in text generation tasks by combining the strengths of retrieval and generation. The model delivers more accurate and relevant information while maintaining generation speed, which is especially crucial for applications requiring quick and precise information retrieval. The development of LightRAG stems from the need for improvements over existing text generation models, particularly in scenarios involving large datasets and complex queries. Currently, it is open-source and freely available, providing researchers and developers with a powerful tool to explore and implement retrieval-based text generation tasks.
AI text generation
61.0K

Llamaindex.ts
LlamaIndex.TS is a framework designed for building applications based on large language models (LLMs). It focuses on helping users ingest, structure, and access private or domain-specific data. This framework provides a natural language interface to connect humans with inferred data, enabling developers to enhance their software capabilities through LLMs without needing to become experts in machine learning or natural language processing. LlamaIndex.TS supports popular runtime environments such as Node.js, Vercel Edge Functions, and Deno.
AI Development Assistant
54.1K

C4AI CommandR 08 2024
C4AI Command R 08-2024 is a large language model with 3.5 billion parameters developed by Cohere and Cohere For AI, optimized for diverse applications such as reasoning, summarization, and question-answering. The model supports training in 23 languages and has been evaluated in 10 languages, exhibiting high-performance retrieval-augmented generation (RAG) capabilities. It aligns with human preferences for usefulness and safety through supervised fine-tuning and preference training. Additionally, the model features dialogue tool usage, capable of generating tool-based responses through specific prompt templates.
AI Model
50.0K

C4AI Command R+ 08 2024
C4AI Command R+ 08-2024 is a large-scale research model with 104 billion parameters, demonstrating highly advanced capabilities, including retrieval-augmented generation (RAG) and tool usage for automating complex tasks. The model supports training in 23 languages and has been evaluated in 10 of those languages. It optimizes various use cases, including reasoning, summarization, and question-answering.
AI Model
55.8K

Easy RAG
Easy-RAG is a Retrieval-Augmented Generation (RAG) system that is ideal for learners to understand and master RAG technology, while also being convenient for developers to use and expand independently. This system enhances retrieval efficiency and generation quality by integrating knowledge graph extraction tools, reranking mechanisms, and the FAISS vector database.
AI Model
98.3K

Rerank 3
Rerank 3 is a new foundational model optimized for enterprise search and retrieval-augmented generation (RAG) systems. It supports multilingual and multi-structured data search, provides high-precision semantic ranking, significantly improves response accuracy and latency, and greatly reduces the overall cost of ownership. Rerank 3 can be seamlessly integrated into any database or search engine and supports seamless integration with existing applications' native search functionality.
AI search engine
54.6K
Featured AI Tools
English Picks

Jules AI
Jules は、自動で煩雑なコーディングタスクを処理し、あなたに核心的なコーディングに時間をかけることを可能にする異步コーディングエージェントです。その主な強みは GitHub との統合で、Pull Request(PR) を自動化し、テストを実行し、クラウド仮想マシン上でコードを検証することで、開発効率を大幅に向上させています。Jules はさまざまな開発者に適しており、特に忙しいチームには効果的にプロジェクトとコードの品質を管理する支援を行います。
開発プログラミング
50.0K

Nocode
NoCode はプログラミング経験を必要としないプラットフォームで、ユーザーが自然言語でアイデアを表現し、迅速にアプリケーションを生成することが可能です。これにより、開発の障壁を下げ、より多くの人が自身のアイデアを実現できるようになります。このプラットフォームはリアルタイムプレビュー機能とワンクリックデプロイ機能を提供しており、技術的な知識がないユーザーにも非常に使いやすい設計となっています。
開発プラットフォーム
45.5K

Listenhub
ListenHub は軽量級の AI ポッドキャストジェネレーターであり、中国語と英語に対応しています。最先端の AI 技術を使用し、ユーザーが興味を持つポッドキャストコンテンツを迅速に生成できます。その主な利点には、自然な会話と超高品質な音声効果が含まれており、いつでもどこでも高品質な聴覚体験を楽しむことができます。ListenHub はコンテンツ生成速度を改善するだけでなく、モバイルデバイスにも対応しており、さまざまな場面で使いやすいです。情報取得の高効率なツールとして位置づけられており、幅広いリスナーのニーズに応えています。
AI
43.3K
Chinese Picks

腾讯混元画像 2.0
腾讯混元画像 2.0 は腾讯が最新に発表したAI画像生成モデルで、生成スピードと画質が大幅に向上しました。超高圧縮倍率のエンコード?デコーダーと新しい拡散アーキテクチャを採用しており、画像生成速度はミリ秒級まで到達し、従来の時間のかかる生成を回避することが可能です。また、強化学習アルゴリズムと人間の美的知識の統合により、画像のリアリズムと詳細表現力を向上させ、デザイナー、クリエーターなどの専門ユーザーに適しています。
画像生成
43.6K

Openmemory MCP
OpenMemoryはオープンソースの個人向けメモリレイヤーで、大規模言語モデル(LLM)に私密でポータブルなメモリ管理を提供します。ユーザーはデータに対する完全な制御権を持ち、AIアプリケーションを作成する際も安全性を保つことができます。このプロジェクトはDocker、Python、Node.jsをサポートしており、開発者が個別化されたAI体験を行うのに適しています。また、個人情報を漏らすことなくAIを利用したいユーザーにお勧めします。
オープンソース
45.8K

Fastvlm
FastVLM は、視覚言語モデル向けに設計された効果的な視覚符号化モデルです。イノベーティブな FastViTHD ミックスドビジュアル符号化エンジンを使用することで、高解像度画像の符号化時間と出力されるトークンの数を削減し、モデルのスループットと精度を向上させました。FastVLM の主な位置付けは、開発者が強力な視覚言語処理機能を得られるように支援し、特に迅速なレスポンスが必要なモバイルデバイス上で優れたパフォーマンスを発揮します。
画像処理
43.3K
English Picks

ピカ
ピカは、ユーザーが自身の創造的なアイデアをアップロードすると、AIがそれに基づいた動画を自動生成する動画制作プラットフォームです。主な機能は、多様なアイデアからの動画生成、プロフェッショナルな動画効果、シンプルで使いやすい操作性です。無料トライアル方式を採用しており、クリエイターや動画愛好家をターゲットとしています。
映像制作
17.6M
Chinese Picks

Liblibai
LiblibAIは、中国をリードするAI創作プラットフォームです。強力なAI創作能力を提供し、クリエイターの創造性を支援します。プラットフォームは膨大な数の無料AI創作モデルを提供しており、ユーザーは検索してモデルを使用し、画像、テキスト、音声などの創作を行うことができます。また、ユーザーによる独自のAIモデルのトレーニングもサポートしています。幅広いクリエイターユーザーを対象としたプラットフォームとして、創作の機会を平等に提供し、クリエイティブ産業に貢献することで、誰もが創作の喜びを享受できるようにすることを目指しています。
AIモデル
6.9M